大学出版部協会

 

Pythonデータ解析入門

Pythonデータ解析入門

A5判 264ページ
価格:2,970円 (消費税:270円)
ISBN978-4-13-062466-4 C3004
奥付の初版発行年月:2024年06月 / 発売日:2024年06月上旬

内容紹介

研究・開発・売上分析・集客など様々な場面でデータマイニングは現代の必須ツールである。本書は、その基礎となる代表的な手法を、Pythonを用いて自分で実装し、基盤となる数理的知識から体系的に理解することを目指すデータ解析の決定版テキストである。

著者プロフィール

森 純一郎(モリ ジュンイチロウ)

博士(情報理工学)
2007年 東京大学大学院情報理工学系研究科電子情報学専攻博士課程修了
現在 東京大学大学院情報理工学系研究科 准教授

上記内容は本書刊行時のものです。

目次

まえがき

第1章 データ解析を学ぶ
1.1 はじめに/1.2 本書の構成/1.3 データサイエンス教育に関するスキルセットとの対応/1.4 学習の進め方/1.5 記号表

第2章 Python の基礎
2.1 Python プログラミング言語/2.2 算術演算/2.3 変数/2.4 関数/2.5 if 文と条件分岐/2.6 リスト/2.7 文字列/2.8 for 文と繰り返し/2.9 辞書/2.10 プログラムの作成

第3章 Python のモジュール
3.1 モジュール/3.2 pandas ライブラリ/3.3 NumPy ライブラリ/3.4 Matplotlib ライブラリ

第4章 データ分析の基礎
4.1 データとは/4.2 データの収集/4.3 データの観察と理解/4.4 データの整形と加工

第5章 テキストデータの分析
5.1 テキストデータ/5.2 テキストの分かち書きと形態素解析/5.3 テキストのベクトル表現/5.4 テキストの類似度/5.5 プログラミング

第6章 ネットワークデータの分析
6.1 ネットワーク分析/6.2 ネットワークの行列表現/6.3 最短経路/6.4 中心性/6.5 固有ベクトル中心性/6.6 ページランク/6.7 プログラミング

第7章 機械学習の基礎
7.1 データの表現/7.2 教師あり学習/7.3 汎化性能/7.4 教師なし学習/7.5 機械学習のモデル/7.6 プログラミング

第8章 クラスタリング
8.1 クラスタリング/8.2 階層化クラスタリング/8.3 K-means 法/8.4 【発展】確率分布モデルによる K-means 法の解釈/8.5 プログラミング

第9章 主成分分析
9.1 主成分分析による次元削減/9.2 主成分分析の考え方/9.3 主成分分析の詳細/9.4 プログラミング

第10章 線形回帰
10.1 線形回帰/10.2 最小二乗法/10.3 勾配降下法/10.4 勾配降下法の一般化/10.5 正規方程式の一般化/10.6 モデルの評価/10.7 【発展】最尤法によるパラメータ推定/10.8 プログラミング

第11章 モデル選択
11.1 過学習/11.2 モデル選択/11.3 交差検証/11.4 交差検証によるモデル選択の例

第12章 ロジスティック回帰
12.1 ロジスティック回帰モデルによる分類/12.2 ロジスティック回帰モデルのパラメータ推定/12.3 ロジスティック回帰モデルのパラメータ推定の一般化/12.4 【発展】多クラス分類/12.5 分類結果の評価/12.6 プログラミング

第13章 ニューラルネットワークの基礎
13.1 ニューロンとニューラルネットワーク/13.2 多層ニューラルネットワーク/13.3 【発展】ニューラルネットワークによる関数の表現/13.4 【発展】ニューラルネットワークの学習/13.5 確率的勾配降下法/13.6 深層ニューラルネットワーク

付録 Python のプログラミング環境
付.1 Colaboratory/付.2 Anaconda

さらに勉強するために
索引


一般社団法人 大学出版部協会 Phone 03-3511-2091 〒102-0073 東京都千代田区九段北1丁目14番13号 メゾン萬六403号室
このサイトにはどなたでも自由にリンクできます。掲載さ>れている文章・写真・イラストの著作権は、それぞれの著作者にあります。
当協会 スタッフによるもの、上記以外のものの著作権は一般社団法人大学出版部協会にあります 。